Cách tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức …

Like Comment

Note: Sau đây là bài viết Cách tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức … được chúng tôi chọn lọc, bài viết luôn được đội ngũ admin cập nhật thường xuyên. Rất mong nhận được sự ủng hộ nhiệt tình của các bạn, xin chân thành cảm ơn!

Originally posted on Tháng Mười Hai 12, 2021 @ 14:46

Cụ thể cách tìm giá trị lớn nhất (GTLN) hay giá trị nhỏ nhất (GTNN) của biểu thức như thế nào? Chúng ta sẽ tìm hiểu qua bài viết dưới đây để 1ua đó vận dụng giải một số bài tập tìm GTLN, GTNN của biểu thức.

I. Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức

Xem thêm: Cách tính giá trị nhỏ nhất

Cho một biểu thức A, ta nói rằng số k là GTNN của A nếu ta chứng minh được 2 điều kiện:

i) A ≥ k với mọi giá trị của biến đối với biểu thức A

ii) Đồng thời, ta tìm được các giá trị của biến cụ thể của A để khi thay vào, A nhận giá trị k.

Tương tự, cho biểu thức B, ta nói rằng số h là GTLN của B nếu ta chứng minh được 2 điều kiện:

i) B ≤ h với mọi giá trị của biến đối với biểu thức B.

ii) Đồng thời, ta tìm được các giá trị của biến cụ thể của B để khi thay vào, B nhận giá trị h.

* Lưu ý: Khi làm bài toán tìm GTLN và GTNN học sinh thường phạm phải hai sai lầm sau:

1) Khi chứng minh được i), học sinh vội kết luận mà quên kiểm tra điều kiện ii)

2) Đã hoàn tất được i) và ii), tuy nhiên, học sinh lại quên đối chiếu điều kiện ràng buộc của biến.

Hiểu đơn giản, bài toán yêu cầu xét trên một tập số nào đó của biến (tức là thêm các yếu tố ràng buộc) mà học sinh không để ý rằng giá trị biến tìm được ở bước ii) lại nằm ngoài tập cho trước đó.

Cách tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức - Toán 8 chuyên đề

* Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức: A = (x2 + 1)2 – 3

Giả sử lời giải như sau:

Vì (x2 + 1)2 ≥ 0 nên (x2 + 1)2 – 3 ≥ -3 ⇔ A ≥ -3

Kết luận giá trị nhỏ nhất của A bằng -3.

→ Kết luận về GTNN như thế là mắc phải sai lầm 1) ở trên, tức là quên kiểm tra điều kiện ii).

Thực ra để cho A bằng 4, ta phải có (x2 + 1)2 = 0 , nhưng điều này không thể xảy ra được với mọi giá trị của biến x.

* Ví dụ 2: Với x là số nguyên không âm, tìm giá trị nhỏ nhất của biểu thức: A = (x + 2)2 – 5.

Giả sử lời giải như sau:

Vì (x + 2)2 ≥ 0 nên (x + 2)2 – 5 ≥ – 5 ⇔ A ≥ – 5

Dấu “=” xảy ra khi và chỉ khi (x + 2)2 = 0 ⇔ x + 2 = 0 ⇔ x = -2

Kết luận GTNN của A = -5 khi x = -2.

→ Kết luận như vậy mắc phải sai lầm 2) ở trên, vì bài toán cho x là số nguyên không âm nên x sẽ không nhận giá trị x = -2 để min(A) = -5 được.

Như vậy các em cần lưu ý khi tìm GTLN và GTNN của một biểu thức (A) thì biểu thức (A) đạt GTLN hay GTNN đó khi biến (x) nhận giá trị bằng bao nhiêu, giá trị này có thỏa ràng buộc biến của bài toán hay không sau đó mới kết luận.

II. Bài tập tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức

Dạng 1: Tìm GTNN, GTLN của biểu thức có dạng tam thức bậc 2

Phương pháp: Đối với dạng tam thức bậc hai ta đưa biểu thức đã cho về dạng bình phương một tổng (hoặc hiệu) cộng (hoặc trừ) đi một số tự do, dạng:

  • d – (a ± b)2 ≤ d Ta tìm được giá trị lớn nhất.
  • (a ± b)2 ± c ≥ ± c Ta tìm được giá trị nhỏ nhất.

* Bài tập 1: Tìm giá trị nhỏ nhất của biểu thức sau: A = (x – 3)2 + 5

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Vì (x – 3)2 ≥ 0 ⇔ (x – 3)2 + 5 ≥ 5 ⇔ A ≥ 5.

Vậy giá trị nhỏ nhất của biểu thức là A = 5 xảy ra khi x – 3 = 0 ⇔ x = 3.

Kết luận: GTNN của A là 5 đạt được khi x = 3.

* Bài tập 2: Tìm giá trị nhỏ nhất của biểu thức sau: A = 2×2 – 8x + 3

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Ta có: A = 2×2 – 8x + 3 = 2×2 – 8x + 8 – 5

⇔ A = 2×2 – 8x + 8 – 5

⇔ A = 2(x2 – 4x + 4) – 5

⇔ A = 2(x – 2)2 – 5

Vì (x – 2)2 ≥ 0 ⇒ 2(x – 2)2 ≥ 0 ⇒ 2(x – 2)2 – 5 ≥ -5

Dấu “=” xảy ra khi (x – 2)2 = 0 ⇔ x – 2 = 0 ⇔ x = 2.

Kết luận: GTNN của A là 5 đạt được khi x = 2.

* Bài tập 3: Tìm GTNN của biểu thức: A = 2×2 – 6x

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Ta có: A = 2×2 – 6x

Cách tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức - Toán 8 chuyên đềCách tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức - Toán 8 chuyên đề

Dấu “=” xảy ra khi

Vậy GTNN của A bằng -9/2 đạt được khi x = 3/2

* Bài tập 4: Tìm giá trị lớn nhất (GTLN) của biểu thức: B = 2 + 4x – x2

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Ta có: B = 2 + 4x – x2 = 6 – 4 + 4x – x2

= 6 – (4 – 4x + x2) = 6 – (2 – x)2

Vì (2 – x)2 ≥ 0

⇒ -(2 – x)2 ≤ 0 (đổi dấu đổi chiều biểu thức)

⇒ 6 – (2 – x)2 ≤ 6 (cộng hai vế với 6)

Vậy GTLN của biểu thức B bằng 6 đạt được khi (2 – x)2 = 0 ⇒ x = 2.

* Bài tập 5: Tìm giá trị lớn nhất (GTLN) của biểu thức: C = 2x – x2

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Ta có: C = 2x – x2 = -x2 + 2x – 1 + 1

Đọc thêm: 5 cách chọn size quần nam và Bảng size quần nam CHUẨN NHẤT – Travelgear Blog

= 1 – (x2 – 2x + 1) = 1 – (x – 1)2

Vì (x – 1)2 ≥ 0

⇒ -(x – 1)2 ≤ 0 (đổi dấu đổi chiều biểu thức)

⇒ 1 – (x – 1)2 ≤ 1 (cộng hai vế với 1)

Vậy GTLN của biểu thức C bằng 1 đạt được khi (x – 1)2 = 0 ⇒ x = 1

Dạng 2: Tìm GTNN, GTLN của biểu thức có chứa dấu trị tuyệt đối

Phương pháp: Đối với dạng tìm GTLN, GTNN này ta có hai cách làm sau:

+) Cách 1: Dựa vào tính chất |x| ≥ 0. Ta biến đổi biểu thức A đã cho về dạng A ≥ a (với a là số đã biết) để suy ra giá trị nhỏ nhất của A là a hoặc biến đổi về dạng A ≤ b (với b là số đã biết) từ đó suy ra giá trị lớn nhất của A là b.

+) Cách 2: Dựa vào biểu thức chứa hai hạng tử là hai biểu thức trong dấu giá trị tuyệt đối. Ta sẽ sử dụng tính chất:

∀x, y ∈ Q ta có:

  • |x + y| ≤ |x| + |y| Dấu “=” xảy ra khi x.y ≥ 0
  • |x – y| ≤ |x| – |y|

* Bài tập 6: Tìm giá trị nhỏ nhất của biểu thức: A = (2x – 1)2 – 6|2x – 1| + 10

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Đặt y = |2x – 1| ⇒ y2 = (2x – 1)2

– Ta có: A = (2x – 1)2 – 6|2x – 1| + 10 = y2 – 6y + 10

= y2 -2.3.y + 9 + 1 = (y – 3)2 + 1

Vì (y – 3)2 ≥ 0 ⇒ (y – 3)2 + 1 ≥ 1.

min(A) = 1 khi chỉ khi (y – 3)2 = 0 ⇔ y = 3 ⇔ |2x – 1| = 3

⇔ 2x – 1 = 3 hoặc 2x – 1 = -3

⇔ 2x = 4 hoặc 2x = -2

⇔ x = 2 hoặc x = -1.

Kết luận: Biểu thức đạt giá trị nhỏ nhất bằng 1 khi x = 2 hoặc x = -1.

* Bài tập 7: Tìm giá trị nhỏ nhất của biểu thức: B = |x – 1| + |x – 3|

Tham khảo: Cách tính lãi suất vay ngân hàng Agribank mới nhất 2021

> Lời giải:

– Lưu ý rằng |-a| = |a|, nên ta có:

B = |x – 1| + |x – 3| = |x – 1| + |3 – x| ≥ | x – 1 + 3 – x| = 2.

Suy ra: B ≥ 2 dấu “=” xảy ra khi chỉ khi (x – 1)(3 – x) ≥ 0

⇔ x – 1 ≥ 0 và 3 – x ≥ 0;

hoặc x – 1 ≤ 0 và 3 – x ≤ 0

⇔ (x ≥ 1 và 3 ≥ x)

hoặc (x ≤ 1 và 3 ≤ x)

⇔ 1 ≤ x ≤ 3

Đọc thêm: Ý nghĩa của an cư lợi hại sát phú bại vong – CHỦ ĐẦU TƯ

Lời kết: Originally posted on Tháng Mười Hai 12 2021 1446Cụ thể cách tìm giá trị lớn nhất GTLN hay giá trị n

Có thể bạn thích
Tác giả: Sharescript.net

Trả lời

Email của bạn sẽ không được hiển thị công khai.